A repartitioning hypergraph model for dynamic load balancing
نویسندگان
چکیده
In parallel adaptive applications, the computational structure of the applications changes over time, leading to load imbalances even though the initial load distributions were balanced. To restore balance and to keep communication volume low in further iterations of the applications, dynamic load balancing (repartitioning) of the changed computational structure is required. Repartitioning differs from static load balancing (partitioning) due to the additional requirement of minimizing migration cost to move data from an existing partition to a new partition. In this paper, we present a novel repartitioning hypergraph model for dynamic load balancing that accounts for both communication volume in the application and migration cost to move data, in order to minimize the overall cost. Use of a hypergraph-based model allows us to accurately model communication costs rather than approximate them with graph-based models. We show that the new model can be realized using hypergraph partitioning with fixed vertices and describe our parallel multilevel implementation within the Zoltan load-balancing toolkit. To the best of our knowledge, this is the first implementation for dynamic load balancing based on hypergraph partitioning. To demonstrate the effectiveness of our approach, we conducted experiments on a Linux cluster with 1024 processors. The results show that, in terms of reducing total cost, our new model compares favorably to the graph-based dynamic load balancing approaches, and multilevel approaches improve the repartitioning quality significantly.
منابع مشابه
Dynamic Load Balancing for Adaptive Scientific Computations via Hypergraph Repartitioning
Adaptive scientific computations require that periodic repartitioning (load balancing) occur dynamically to maintain load balance. Hypergraph partitioning is a successful model for minimizing communication volume in scientific computations, and partitioning software for the static case is widely available. In this paper, we present a new hypergraph model for the dynamic case, where we minimize ...
متن کاملHypergraph-based Dynamic Partitioning and Load Balancing
1.1 INTRODUCTION An important component of parallel scientific computing is the assignment of work to processors. This assignment problem is also known as partitioning or mapping. The goal of the assignment problem is to find a task-to-processor mapping that will minimize the total execution time. Although efficient optimal solutions for certain restricted variations, such as chain-or tree-stru...
متن کاملDynamic mesh partitioning & load-balancing for parallel computational mechanics codes
We discuss the load-balancing issues arising in parallel mesh based computational mechanics codes for which the processor loading changes during the run. We briefly touch on geometric repartitioning ideas and then focus on different ways of using a graph both to solve the load-balancing problem and the optimisation problem, both locally and globally. We also briefly discuss whether repartitioni...
متن کاملGraph Repartitioning with both Dynamic Load and Dynamic Processor Allocation
Dynamic load balancing is an important step conditioning the performance of parallel programs, like adaptive mesh refinement codes. If the global workload varies drastically over time (such that memory is exceeded), it can be relevant to adjust the number of processors while maintaining the load balanced. We propose two different solutions, that extend classic graph repartitioning approaches to...
متن کاملWorkload-aware incremental repartitioning of shared-nothing distributed databases for scalable OLTP applications
On-line Transaction Processing (OLTP) applications often rely on shared-nothing distributed databases that can sustain rapid growth in data volume. Distributed transactions (DTs) that involve data tuples from multiple geo-distributed servers can adversely impact the performance of such databases, especially when the transactions are short-lived and these require immediate responses. The k-way m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Parallel Distrib. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2009